TEXUS 49 lifts off with four German experiments on board

The TEXUS 49 sounding rocket lifted off from the Esrange Space Center near Kiruna in northern Sweden on 29 March 2011 at 06.01 CET.

The German Aerospace Center (DLR) rocket, carrying four German experiments for medical and materials research, reached an altitude of 268 kilometres. The experiments were subjected to close to six minutes of microgravity during the twenty-minute long flight before the payloads were parachuted back to Earth, as scheduled.

TEXUS' main payload was the German-developed electromagnetic levitation system (Elektromagnetische Levitationsanlage; EML). With it, research scientists from the DLR Institute of Materials Physics in Space in Cologne performed two experiments to study the thermophysical properties and solidification behaviour of metal alloys of interest to industry. One of the experiments analysed an aluminium-nickel compound used in aviation and other transport systems.

The second experiment examined a nickel-tantalum alloy with ceramic particles, which were added to improve the composite's wear characteristics. The results obtained in the microgravity environment are more accurate than those obtained in a laboratory on Earth because the forces required to maintain the particles in suspension and the disruptive internal flows in the liquid metal are substantially reduced. The researchers obtained high-precision data that is important for the development of computer simulations required for modern industrial manufacturing processes.

The TRACE+ (Transparent Alloys for Columnar Equiaxed Solidification) materials science experiment, performed by the Aachen ACCESS research centre, investigated the processes and structures involved in the solidification of metallic alloys. This was done by analysing the behaviour of a mixture of organic substances with a solidification process similar to that of a liquid metal. The transparency of the organic alloy made it possible to observe its solidification process directly. The experiment will yield data for improving industrial casting processes.

The SITI-1 medical/biological experiment, carried out by a research group from the Otto von Guericke University of Magdeburg, studied the mechanisms leading to disturbances in the immune system when subjected to a microgravity environment. For example, some astronauts are prone to suffering infections during prolonged periods of time in space.

In addition, cell cultures were carried on board TEXUS 49 to monitor the activity of all genes in the immune system using modern DNA chip technology. Scientists suspect that certain molecules in cell membranes may be responsible for disrupting the immune system in microgravity. If these suspicions are confirmed, the findings could eventually lead to new approaches for fighting diseases.

DLR commissioned Astrium Space Transportation in Bremen for the launch preparations and implementation of the TEXUS 49 mission. Kayser-Threde in Munich and DLR's Mobile Rocket Base (MObile RAketenBAsis; MORABA) in Oberpfaffenhofen also participated in the mission. The VSB-30 two-stage launcher was a joint venture between the Brazilian aerospace organisations Centro Técnico Aeroespacial (CTA) and Instituto de Aeronáutica e Espaço (IAE), together with MORABA and the Swedish Space Corporation (SSC). This was its seventh launch from Esrange under the TEXUS programme.

  • Hersteller


  • Typ

    Bitte Hersteller auswählen!

FLUG REVUE 02/2017


Einzelheft bestellen

- Airbus gegen Boeing
- Letzter Flug der QF-4
- Flybe expandiert
- X-Planes der NASA
- Watt-Flughafen Barra
- Erfolgsmodell Suchoi Su-30
- Datenrelaissystem im All

aerokurier iPad-App