01.02.2016
Erschienen in: 01/ 2016 FLUG REVUE

ESA-RaumsondeAsteroid Impact Mission

Einen „Big Bang“ wird die ESA-Raumsonde AIM wohl nicht beobachten, einen „Bang“ aber allemal. Daraus wollen Wissenschaftler errechnen, ob man Asteroiden ablenken kann.

fr 01-2016 Asteroid Impact Mission (01)

AIDA steht für „Asteroid Impact & Deflection Assessment“, was sinngemäß „Beurteilung der Ablenkung eines Asteroiden nach einem Einschlag“ bedeutet. Foto und Copyright: ESA  

 

Die Asteroid Impact Mission, kurz AIM, ist als kleine Technologiemission im Rahmen des gemeinsamen NASA-ESA-Vorhabens AIDA (siehe Kasten) ausgelegt und stellt den Rendezvous-Flugkörper für den NASA-Anteil DART (Double Asteroid Redirection Test) dar. Die gemeinsame Mission soll im Jahre 2022 den Asteroiden Didymos (1996G) erreichen. Dort wird AIM als Erstes hochpräzise Vermessungen vornehmen, aus denen ein 3D-Modell des Asteroiden erstellt werden kann. Die komplexen Beobachtungen aus einer Höhe von zehn bis 35 Kilometern über der Oberfläche werden ein paar Monate dauern.

fr 01-2016 Asteroid Impact Mission (02)

Für AIDA schickt die NASA den Impactor DART zum Didymoon und lässt ihn dort einschlagen. AIM indessen registriert sämtliche Folgen der Kollision – von Änderungen der Struktur bis hin zu solchen der Flugbahn. Daraus kann man künftige Schutzmaßnahmen ableiten. Foto und Copyright: ESA  

 

Anschließend setzt AIM einige sogenannte CubeSats sowie einen Landekörper auf dem Mond des Binärsystems, Didymoon, aus. Dieses Gerät basiert auf dem des DLR-Landers MASCOT, welcher sich derzeit an Bord der JAXA-Raumsonde Hayabusa-2 befindet. Er verfügt über ein Niederfrequenz-Radargerät, mit dem die Eigenschaften der tieferen Schichten des Felsbrockens untersucht werden sollen.

Jetzt ist der Zeitpunkt für den großen Auftritt von DART gekommen. AIM entfernt sich bis auf 100 Kilometer von Didymos und beobachtet mit den eigenen Bordinstrumenten sowie denen der CubeSats und des Landers den gesteuerten Einschlag auf Didymoon. Eine Phase der Beobachtungen der Folgen dieses Ereignisses schließt die Mission ab. Dafür wird AIM mit folgenden Instrumenten ausgerüstet:

fr 01-2016 Asteroid Impact Mission (03)

Ein Einschlag wie jener, der den Barringer-Krater in Arizona hervorrief, soll sich möglichst nicht wiederholen. Foto und Copyright: ESA  

 

•    dem Visual Imaging System (VIS),
•    einem Thermal Imager (TIRI),
•    einem High Frequency Radar (HFR),
•    einem Optical Link for Communication (Optel-D),
•    dem Lander MASCOT-2 sowie
•    den CubeSat Opportunity Payloads (COPINS).

Bei letzteren wird in allen bisherigen Veröffentlichungen nur von „einigen“ gesprochen, doch zeigen die Grafiken stets zwei dieser Mini-Flugkörper. Viel mehr werden an Bord auch nicht Platz haben, denn AIM wird als Sonde sehr einfacher Bauweise mit fest stehenden Solargeneratoren (5,6 m²) und ebensolcher Sendeantenne beschrieben. Maße wurden noch nicht angegeben, aber die Startmasse soll bei nur 420 kg liegen, von denen 292 kg schon für den Treibstoff der 24 Steuertriebwerke abgezogen werden müssen. Diese sollen AIM eine enorme Manövrierfähigkeit verleihen.

Didymos/Didymoon wurden als Ziele ausgewählt, weil der sonnennächste Punkt ihrer Flugbahn knapp unterhalb des sonnenfernsten der Umlaufbahn der Erde liegt. Deshalb konnte die Raumsonde ziemlich klein und unkompliziert projektiert werden. Dennoch wird sie erstmals interplanetare Kommunikation mit optischen Mitteln und Tiefraum-Verbindungen zwischen einem Orbiter, Tochtersatelliten sowie einem Landekörper realisieren. Damit wird AIM Technologiegeschichte schreiben.

fr 01-2016 Asteroid Impact Mission (04)

MASCOT-2 auf der Oberfläche des kleinen Didymoon. Foto und Copyright: ESA  

 

Der Einschlag eines mit großer Geschwindigkeit auftreffenden Impactor könnte Auswirkungen auf die Flugbahn des nur 750 Meter durchmessenden Asteroiden haben und damit wichtige Erkenntnisse für künftige Abwehrmaßnahmen gegenüber NEOs liefern. Solche Near Earth Objects kommen der Erde von Zeit zu Zeit recht nahe, wobei Zusammenstöße nicht ausgeschlossen sind. Die Vermessung der Abweichungen lässt sich in einem Binärsystem, dessen Parameter wie Durchmesser und Rotationsperiode genau bekannt sind, zuverlässiger realisieren als bei einem „Single Object“, weil hier ein fester Bezugspunkt fehlt.

FLUG REVUE Ausgabe 01/2016

Mehr Infos zu:
Mehr zum Thema:
flugrevue.de/Matthias Gründer


Weitere interessante Inhalte
Fliegendes NASA- und DLR-Observatorium SOFIA landet zum C-Check in Hamburg

20.11.2017 - Eine zum fliegenden Himmelsbeobachter umgebaute Boeing 747 SP ist am Montag für einen sogenannten C-Check in Hamburg gelandet. Lufthansa Technik macht den Oldie-Jumbo an der Elbe technisch wieder fit. … weiter

Trotz Risiken NASA will SLS Ende 2019 erstmals starten

09.11.2017 - Die US-Raumfahrtbehörde hält am Erstflugtermin der neuen Schwerlastrakete Space Launch System (SLS) im Dezember 2019 fest - trotz eines Berichts, der auf Produktionsrisiken hinweist. … weiter

NASA-Forschung Flugtests für leisere Flugzeuge

27.10.2017 - Adaptive Flügelhinterkanten und neuartige Fahrwerksverkleidungen könnten den Lärm anfliegender Flugzeuge verringern. Die NASA hat die Technologien kürzlich mit einer Gulfstream GIII getestet. … weiter

Kraftpakete der Raumfahrt Top 10: Die stärksten Raketen der Welt

20.10.2017 - Nicht die Länge ist entscheidend, sondern die Leistung für die Aufnahme von Trägerraketen in den exklusiven Club der Kraftpakete. … weiter

Unterschall-X-Flugzeug von Aurora Flight Sciences NASA unterstützt weitere Entwicklung der D8

11.10.2017 - Aurora Flight Sciences hat einen Auftrag der NASA erhalten, sein Konzept für ein neues Passagierflugzeug voranzutreiben. … weiter


FLUG REVUE 12/2017

FLUG REVUE
12/2017
06.11.2017

Abonnements
Digitalabo
E-Paper
Heft-Archiv
Einzelheft bestellen


- Zerlegung entführte Landshut
- Erstflug Airbus A330neo
- airberlins letzte Landung
- NBAA-BACE Las Vegas
- Fliegerschießen Axalp
- Eurofighter Luftwaffe
- Kassenschlager CFM56
- Fliegeruhren EXTRA